Quasi-interpolation in shift invariant spaces
نویسندگان
چکیده
Let s ≥ 1 be an integer, φ : Rs → R be a compactly supported function, and S(φ) denote the linear span of {φ(· − k) : k ∈ Zs}. We consider the problem of approximating a continuous function f : Rs → R on compact subsets of Rs from the classes S(φ(h·)), h > 0, based on samples of the function at scattered sites in R s. We demonstrate how classical polynomial inequalities lead to the construction of local, quasi-interpolatory operators for this purpose.
منابع مشابه
Approximation Orders of and Approximation Maps from Local Principal Shift-invariant Spaces Approximation Orders of and Approximation Maps from Local Principal Shift-invariant Spaces
Approximation orders of shift-invariant subspaces of L p (IR d), 2 p 1, generated by the shifts of one compactly supported function are considered. In that course, explicit approximation maps are constructed. The approach avoids quasi-interpolation and applies to stationary and non-stationary reenements. The general results are specialized to box spline spaces, to obtain new results on their ap...
متن کاملApproximation from Shift-invariant Spaces by Integral Operators∗
We investigate approximation from shift-invariant spaces by using certain integral operators and discuss various applications of this approximation scheme. We assume that our integral operators commute with shift operators and that their kernel functions decay at a polynomial rate. We prove that the approximation order provided by such an integral operator is m if and only if the integral opera...
متن کاملShift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups
We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...
متن کاملUniform Minimality, Unconditionality and Interpolation in Backward Shift Invariant Spaces
ABSTRACT. We discuss relations between uniform minimality, unconditionality and interpolation for families of reproducing kernels in backward shift invariant subspaces. This class of spaces contains as prominent examples the Paley-Wiener spaces for which it is known that uniform minimality does in general neither imply interpolation nor unconditionality. Hence, contrarily to the situation of st...
متن کاملFinite element quasi-interpolation and best approximation
This paper introduces a quasi-interpolation operator for scalarand vector-valued finite element spaces constructed on affine, shape-regular meshes with some continuity across mesh interfaces. This operator gives optimal estimates of the best approximation error in any Lp-norm assuming regularity in the fractional Sobolev spaces W r,p, where p ∈ [1,∞] and the smoothness index r can be arbitraril...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000