Quasi-interpolation in shift invariant spaces

نویسندگان

  • H. N. Mhaskar
  • J. D. Ward
  • George Leitmann
چکیده

Let s ≥ 1 be an integer, φ : Rs → R be a compactly supported function, and S(φ) denote the linear span of {φ(· − k) : k ∈ Zs}. We consider the problem of approximating a continuous function f : Rs → R on compact subsets of Rs from the classes S(φ(h·)), h > 0, based on samples of the function at scattered sites in R s. We demonstrate how classical polynomial inequalities lead to the construction of local, quasi-interpolatory operators for this purpose.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation Orders of and Approximation Maps from Local Principal Shift-invariant Spaces Approximation Orders of and Approximation Maps from Local Principal Shift-invariant Spaces

Approximation orders of shift-invariant subspaces of L p (IR d), 2 p 1, generated by the shifts of one compactly supported function are considered. In that course, explicit approximation maps are constructed. The approach avoids quasi-interpolation and applies to stationary and non-stationary reenements. The general results are specialized to box spline spaces, to obtain new results on their ap...

متن کامل

Approximation from Shift-invariant Spaces by Integral Operators∗

We investigate approximation from shift-invariant spaces by using certain integral operators and discuss various applications of this approximation scheme. We assume that our integral operators commute with shift operators and that their kernel functions decay at a polynomial rate. We prove that the approximation order provided by such an integral operator is m if and only if the integral opera...

متن کامل

Shift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups

We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...

متن کامل

Uniform Minimality, Unconditionality and Interpolation in Backward Shift Invariant Spaces

ABSTRACT. We discuss relations between uniform minimality, unconditionality and interpolation for families of reproducing kernels in backward shift invariant subspaces. This class of spaces contains as prominent examples the Paley-Wiener spaces for which it is known that uniform minimality does in general neither imply interpolation nor unconditionality. Hence, contrarily to the situation of st...

متن کامل

Finite element quasi-interpolation and best approximation

This paper introduces a quasi-interpolation operator for scalarand vector-valued finite element spaces constructed on affine, shape-regular meshes with some continuity across mesh interfaces. This operator gives optimal estimates of the best approximation error in any Lp-norm assuming regularity in the fractional Sobolev spaces W r,p, where p ∈ [1,∞] and the smoothness index r can be arbitraril...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000